2000 character limit reached
Gabor frames for functions supported on a semi-axis (2505.14207v1)
Published 20 May 2025 in math.FA
Abstract: Let $g\in L2(\mathbb{R})$ be a strictly decreasing continuous function supported on $\mathbb{R}+$ such that for all $t > 0$ we have $g(x+t)\le q(t)g(x)$ for some $q(t)<1$. We prove that the Gabor system $$\mathcal{G}(g;\alpha,\beta):={g{m,n}}{m,n\in\mathbb{Z}}={e{2\pi i \beta m x}g(x-\alpha n)}{m,n\in\mathbb{Z}}$$ always forms a frame in $L2(\mathbb{R})$ for all lattice parameters $\alpha$,$\beta$, $\alpha\beta\leq 1$.