Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Lie-Hamilton systems: $t$-Dependent curved oscillators and Kepler-Coulomb Hamiltonians (2505.13853v1)

Published 20 May 2025 in math-ph, math.DS, math.MP, and nlin.SI

Abstract: The Lie-Hamilton approach for $t$-dependent Hamiltonians is extended to cover the so-called nonlinear Lie-Hamilton systems, which are no longer related to a linear $t$-dependent combination of a basis of a finite-dimensional Lie algebra of functions $\mathcal{W}$, but an arbitrary $t$-dependent function on $\mathcal{W}$. This novel formalism is accomplished through a detailed analysis of related structures, such as momentum maps and generalized distributions, together with the extension of the Poisson coalgebra method to a $t$-dependent frame, in order to systematize the construction of constants of the motion for nonlinear systems. Several relevant relations between nonlinear Lie-Hamilton systems, Lie-Hamilton systems, and collective Hamiltonians are analyzed. The new notions and tools are illustrated with the study of the harmonic oscillator, H\'enon-Heiles systems and Painlev\'e trascendents within a $t$-dependent framework. In addition, the formalism is carefully applied to construct oscillators with a $t$-dependent frequency and Kepler-Coulomb systems with a $t$-dependent coupling constant on the $n$-dimensional sphere, Euclidean and hyperbolic spaces, as well as on some spaces of non-constant curvature.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com