Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 42 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Are Multimodal Large Language Models Ready for Omnidirectional Spatial Reasoning? (2505.11907v1)

Published 17 May 2025 in cs.CV

Abstract: The 180x360 omnidirectional field of view captured by 360-degree cameras enables their use in a wide range of applications such as embodied AI and virtual reality. Although recent advances in multimodal LLMs (MLLMs) have shown promise in visual-spatial reasoning, most studies focus on standard pinhole-view images, leaving omnidirectional perception largely unexplored. In this paper, we ask: Are MLLMs ready for omnidirectional spatial reasoning? To investigate this, we introduce OSR-Bench, the first benchmark specifically designed for this setting. OSR-Bench includes over 153,000 diverse question-answer pairs grounded in high-fidelity panoramic indoor scene maps. It covers key reasoning types including object counting, relative distance, and direction. We also propose a negative sampling strategy that inserts non-existent objects into prompts to evaluate hallucination and grounding robustness. For fine-grained analysis, we design a two-stage evaluation framework assessing both cognitive map generation and QA accuracy using rotation-invariant matching and a combination of rule-based and LLM-based metrics. We evaluate eight state-of-the-art MLLMs, including GPT-4o, Gemini 1.5 Pro, and leading open-source models under zero-shot settings. Results show that current models struggle with spatial reasoning in panoramic contexts, highlighting the need for more perceptually grounded MLLMs. OSR-Bench and code will be released at: https://huggingface.co/datasets/UUUserna/OSR-Bench

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube