Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
98 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

A Perturbation and Speciation-Based Algorithm for Dynamic Optimization Uninformed of Change (2505.11634v1)

Published 16 May 2025 in cs.NE

Abstract: Dynamic optimization problems (DOPs) are challenging due to their changing conditions. This requires algorithms to be highly adaptable and efficient in terms of finding rapidly new optimal solutions under changing conditions. Traditional approaches often depend on explicit change detection, which can be impractical or inefficient when the change detection is unreliable or unfeasible. We propose Perturbation and Speciation-Based Particle Swarm Optimization (PSPSO), a robust algorithm for uninformed dynamic optimization without requiring the information of environmental changes. The PSPSO combines speciation-based niching, deactivation, and a newly proposed random perturbation mechanism to handle DOPs. PSPSO leverages a cyclical multi-population framework, strategic resource allocation, and targeted noisy updates, to adapt to dynamic environments. We compare PSPSO with several state-of-the-art algorithms on the Generalized Moving Peaks Benchmark (GMPB), which covers a variety of scenarios, including simple and multi-modal dynamic optimization, frequent and intense changes, and high-dimensional spaces. Our results show that PSPSO outperforms other state-of-the-art uninformed algorithms in all scenarios and leads to competitive results compared to informed algorithms. In particular, PSPSO shows strength in functions with high dimensionality or high frequency of change in the GMPB. The ablation study showed the importance of the random perturbation component.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.