Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probing the Vulnerability of Large Language Models to Polysemantic Interventions (2505.11611v1)

Published 16 May 2025 in cs.AI, cs.CL, and cs.CR

Abstract: Polysemanticity -- where individual neurons encode multiple unrelated features -- is a well-known characteristic of large neural networks and remains a central challenge in the interpretability of LLMs. At the same time, its implications for model safety are also poorly understood. Leveraging recent advances in sparse autoencoders, we investigate the polysemantic structure of two small models (Pythia-70M and GPT-2-Small) and evaluate their vulnerability to targeted, covert interventions at the prompt, feature, token, and neuron levels. Our analysis reveals a consistent polysemantic topology shared across both models. Strikingly, we demonstrate that this structure can be exploited to mount effective interventions on two larger, black-box instruction-tuned models (LLaMA3.1-8B-Instruct and Gemma-2-9B-Instruct). These findings suggest not only the generalizability of the interventions but also point to a stable and transferable polysemantic structure that could potentially persist across architectures and training regimes.

Summary

We haven't generated a summary for this paper yet.