Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust and Computationally Efficient Trimmed L-Moments Estimation for Parametric Distributions (2505.09860v1)

Published 14 May 2025 in stat.ME, math.ST, stat.AP, stat.CO, and stat.TH

Abstract: This paper proposes a robust and computationally efficient estimation framework for fitting parametric distributions based on trimmed L-moments. Trimmed L-moments extend classical L-moment theory by downweighting or excluding extreme order statistics, resulting in estimators that are less sensitive to outliers and heavy tails. We construct estimators for both location-scale and shape parameters using asymmetric trimming schemes tailored to different moments, and establish their asymptotic properties for inferential justification using the general structural theory of L-statistics, deriving simplified single-integration expressions to ensure numerical stability. State-of-the-art algorithms are developed to resolve the sign ambiguity in estimating the scale parameter for location-scale models and the tail index for the Frechet model. The proposed estimators offer improved efficiency over traditional robust alternatives for selected asymmetric trimming configurations, while retaining closed-form expressions for a wide range of common distributions, facilitating fast and stable computation. Simulation studies demonstrate strong finite-sample performance. An application to financial claim severity modeling highlights the practical relevance and flexibility of the approach.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com