On the Fourier orthonormal bases of a class of Sierpinski-type Moran measures on $ \mathbb{R}^n $ (2505.09360v1)
Abstract: Let the infinite convolutions \begin{equation*} \mu_{{R_{k}},\ D_{k}}} = \delta_{R_{1}{-1} D_1}* \delta_{R_1{-1} R_{2}{-1} D_2}* \delta_{R_1{-1} R_2{-1} R_3{-1} D_3}\dotsi \end{equation} be generated by the sequence of pairs ${ (M_k,D_k) }{k=1}{\infty} $, where $ M_k\in M_n(\mathbb{Z})$ is an expanding integer matric, $D_k$ is a finite integer digit sets that satisfies the following two conditions: (i). $ # D_k = m$ and $m>2$ is a prime; (ii). ${x: \sum{d\in D_{k}}e{2\pi i\langle d,x \rangle}=0} =\cup_{i=1}{\phi(k)}\cup_{j=1}{m-1}\left(\frac{j}{m}\nu_{k,i}+\mathbb{Z}{n}\right)$ for some $\nu_{k,i} \in { (l_1, \cdots, l_n)* : l_i \in [1, m-1] \cap \mathbb{Z}, 1\leq i\leq n }$. In this paper, we study the spectrality of $\mu_{{R_{k}},{D_{k}}}$, and some necessary and sufficient conditions for $L2 (\mu_{{R_{k}},{D_{k}}})$ to have an orthogonal exponential function basis are established. Finally, we demonstrate applications of these results to Moran measures.