Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Transport-Based Domain Adaptation for Rotated Linear Regression (2505.09229v1)

Published 14 May 2025 in stat.ML, cs.LG, and math.PR

Abstract: Optimal Transport (OT) has proven effective for domain adaptation (DA) by aligning distributions across domains with differing statistical properties. Building on the approach of Courty et al. (2016), who mapped source data to the target domain for improved model transfer, we focus on a supervised DA problem involving linear regression models under rotational shifts. This ongoing work considers cases where source and target domains are related by a rotation-common in applications like sensor calibration or image orientation. We show that in $\mathbb{R}2$ , when using a p-norm cost with $p $\ge$ 2$, the optimal transport map recovers the underlying rotation. Based on this, we propose an algorithm that combines K-means clustering, OT, and singular value decomposition (SVD) to estimate the rotation angle and adapt the regression model. This method is particularly effective when the target domain is sparsely sampled, leveraging abundant source data for improved generalization. Our contributions offer both theoretical and practical insights into OT-based model adaptation under geometric transformations.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets