Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mean-field behaviour of the random connection model on hyperbolic space (2505.09025v1)

Published 13 May 2025 in math.PR

Abstract: We study the random connection model on hyperbolic space $\mathbb{H}d$ in dimension $d=2,3$. Vertices of the spatial random graph are given as a Poisson point process with intensity $\lambda>0$. Upon variation of $\lambda$ there is a percolation phase transition: there exists a critical value $\lambda_c>0$ such that for $\lambda<\lambda_c$ all clusters are finite, but infinite clusters exist for $\lambda>\lambda_c$. We identify certain critical exponents that characterize the clusters at (and near) $\lambda_c$, and show that they agree with the mean-field values for percolation. We derive the exponents through isoperimetric properties of critical percolation clusters rather than via a calculation of the triangle diagram.

Summary

We haven't generated a summary for this paper yet.