Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A suite of LMs comprehend puzzle statements as well as humans (2505.08996v1)

Published 13 May 2025 in cs.CL

Abstract: Recent claims suggest that LLMs (LMs) underperform humans in comprehending minimally complex English statements (Dentella et al., 2024). Here, we revisit those findings and argue that human performance was overestimated, while LLM abilities were underestimated. Using the same stimuli, we report a preregistered study comparing human responses in two conditions: one allowed rereading (replicating the original study), and one that restricted rereading (a more naturalistic comprehension test). Human accuracy dropped significantly when rereading was restricted (73%), falling below that of Falcon-180B-Chat (76%) and GPT-4 (81%). The newer GPT-o1 model achieves perfect accuracy. Results further show that both humans and models are disproportionately challenged by queries involving potentially reciprocal actions (e.g., kissing), suggesting shared pragmatic sensitivities rather than model-specific deficits. Additional analyses using Llama-2-70B log probabilities, a recoding of open-ended model responses, and grammaticality ratings of other sentences reveal systematic underestimation of model performance. We find that GPT-4o can align with either naive or expert grammaticality judgments, depending on prompt framing. These findings underscore the need for more careful experimental design and coding practices in LLM evaluation, and they challenge the assumption that current models are inherently weaker than humans at language comprehension.

Summary

We haven't generated a summary for this paper yet.