Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Any random variable with right-unbounded distributional support is the minimum of independent and very heavy-tailed random variables (2505.08954v2)

Published 13 May 2025 in math.PR

Abstract: A random variable X has a light-tailed distribution (for short: is light-tailed) if it possesses a finite exponential moment, E \exp (cX) is finite for some c>0, and has a heavy-tailed distribution (is heavy-tailed) if E \exp (cX) is infinite, for all c>0. Leipus, Siaulys and Konstantinides (2023) presented a particular example of a light-tailed random variable that is the minimum of two independent heavy-tailed random variables. We show that this phenomenon is universal: any light-tailed random variable with right-unbounded support may be represented as the minimum of two independent heavy-tailed random variables. Moreover, a more general fact holds: these two independent random variables may have as heavy-tailed distributions as one wishes. Further, we extend the latter result onto the minimum of any finite number of independent random variables.

Summary

We haven't generated a summary for this paper yet.