Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controllable Image Colorization with Instance-aware Texts and Masks (2505.08705v1)

Published 13 May 2025 in cs.CV and cs.AI

Abstract: Recently, the application of deep learning in image colorization has received widespread attention. The maturation of diffusion models has further advanced the development of image colorization models. However, current mainstream image colorization models still face issues such as color bleeding and color binding errors, and cannot colorize images at the instance level. In this paper, we propose a diffusion-based colorization method MT-Color to achieve precise instance-aware colorization with use-provided guidance. To tackle color bleeding issue, we design a pixel-level mask attention mechanism that integrates latent features and conditional gray image features through cross-attention. We use segmentation masks to construct cross-attention masks, preventing pixel information from exchanging between different instances. We also introduce an instance mask and text guidance module that extracts instance masks and text representations of each instance, which are then fused with latent features through self-attention, utilizing instance masks to form self-attention masks to prevent instance texts from guiding the colorization of other areas, thus mitigating color binding errors. Furthermore, we apply a multi-instance sampling strategy, which involves sampling each instance region separately and then fusing the results. Additionally, we have created a specialized dataset for instance-level colorization tasks, GPT-color, by leveraging large visual LLMs on existing image datasets. Qualitative and quantitative experiments show that our model and dataset outperform previous methods and datasets.

Summary

We haven't generated a summary for this paper yet.