Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LCES: Zero-shot Automated Essay Scoring via Pairwise Comparisons Using Large Language Models (2505.08498v1)

Published 13 May 2025 in cs.CL and cs.AI

Abstract: Recent advances in LLMs have enabled zero-shot automated essay scoring (AES), providing a promising way to reduce the cost and effort of essay scoring in comparison with manual grading. However, most existing zero-shot approaches rely on LLMs to directly generate absolute scores, which often diverge from human evaluations owing to model biases and inconsistent scoring. To address these limitations, we propose LLM-based Comparative Essay Scoring (LCES), a method that formulates AES as a pairwise comparison task. Specifically, we instruct LLMs to judge which of two essays is better, collect many such comparisons, and convert them into continuous scores. Considering that the number of possible comparisons grows quadratically with the number of essays, we improve scalability by employing RankNet to efficiently transform LLM preferences into scalar scores. Experiments using AES benchmark datasets show that LCES outperforms conventional zero-shot methods in accuracy while maintaining computational efficiency. Moreover, LCES is robust across different LLM backbones, highlighting its applicability to real-world zero-shot AES.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com