Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Large-Scale Empirical Analysis of Custom GPTs' Vulnerabilities in the OpenAI Ecosystem (2505.08148v1)

Published 13 May 2025 in cs.CR, cs.AI, cs.CL, and cs.LG

Abstract: Millions of users leverage generative pretrained transformer (GPT)-based LLMs developed by leading model providers for a wide range of tasks. To support enhanced user interaction and customization, many platforms-such as OpenAI-now enable developers to create and publish tailored model instances, known as custom GPTs, via dedicated repositories or application stores. These custom GPTs empower users to browse and interact with specialized applications designed to meet specific needs. However, as custom GPTs see growing adoption, concerns regarding their security vulnerabilities have intensified. Existing research on these vulnerabilities remains largely theoretical, often lacking empirical, large-scale, and statistically rigorous assessments of associated risks. In this study, we analyze 14,904 custom GPTs to assess their susceptibility to seven exploitable threats, such as roleplay-based attacks, system prompt leakage, phishing content generation, and malicious code synthesis, across various categories and popularity tiers within the OpenAI marketplace. We introduce a multi-metric ranking system to examine the relationship between a custom GPT's popularity and its associated security risks. Our findings reveal that over 95% of custom GPTs lack adequate security protections. The most prevalent vulnerabilities include roleplay-based vulnerabilities (96.51%), system prompt leakage (92.20%), and phishing (91.22%). Furthermore, we demonstrate that OpenAI's foundational models exhibit inherent security weaknesses, which are often inherited or amplified in custom GPTs. These results highlight the urgent need for enhanced security measures and stricter content moderation to ensure the safe deployment of GPT-based applications.

Summary

We haven't generated a summary for this paper yet.