Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Fairness Testing in Large Language Models: Prioritizing Metamorphic Relations for Bias Detection (2505.07870v1)

Published 9 May 2025 in cs.CL, cs.AI, and cs.SE

Abstract: LLMs are increasingly deployed in various applications, raising critical concerns about fairness and potential biases in their outputs. This paper explores the prioritization of metamorphic relations (MRs) in metamorphic testing as a strategy to efficiently detect fairness issues within LLMs. Given the exponential growth of possible test cases, exhaustive testing is impractical; therefore, prioritizing MRs based on their effectiveness in detecting fairness violations is crucial. We apply a sentence diversity-based approach to compute and rank MRs to optimize fault detection. Experimental results demonstrate that our proposed prioritization approach improves fault detection rates by 22% compared to random prioritization and 12% compared to distance-based prioritization, while reducing the time to the first failure by 15% and 8%, respectively. Furthermore, our approach performs within 5% of fault-based prioritization in effectiveness, while significantly reducing the computational cost associated with fault labeling. These results validate the effectiveness of diversity-based MR prioritization in enhancing fairness testing for LLMs.

Summary

We haven't generated a summary for this paper yet.