Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unmasking Deep Fakes: Leveraging Deep Learning for Video Authenticity Detection (2505.06528v2)

Published 10 May 2025 in cs.CV

Abstract: Deepfake videos, produced through advanced artificial intelligence methods now a days, pose a new challenge to the truthfulness of the digital media. As Deepfake becomes more convincing day by day, detecting them requires advanced methods capable of identifying subtle inconsistencies. The primary motivation of this paper is to recognize deepfake videos using deep learning techniques, specifically by using convolutional neural networks. Deep learning excels in pattern recognition, hence, makes it an ideal approach for detecting the intricate manipulations in deepfakes. In this paper, we consider using MTCNN as a face detector and EfficientNet-B5 as encoder model to predict if a video is deepfake or not. We utilize training and evaluation dataset from Kaggle DFDC. The results shows that our deepfake detection model acquired 42.78% log loss, 93.80% AUC and 86.82% F1 score on kaggle's DFDC dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)

Summary

We haven't generated a summary for this paper yet.