Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct Data Driven Control Using Noisy Measurements (2505.06407v1)

Published 9 May 2025 in eess.SY, cs.LG, cs.RO, cs.SY, and math.OC

Abstract: This paper presents a novel direct data-driven control framework for solving the linear quadratic regulator (LQR) under disturbances and noisy state measurements. The system dynamics are assumed unknown, and the LQR solution is learned using only a single trajectory of noisy input-output data while bypassing system identification. Our approach guarantees mean-square stability (MSS) and optimal performance by leveraging convex optimization techniques that incorporate noise statistics directly into the controller synthesis. First, we establish a theoretical result showing that the MSS of an uncertain data-driven system implies the MSS of the true closed-loop system. Building on this, we develop a robust stability condition using linear matrix inequalities (LMIs) that yields a stabilizing controller gain from noisy measurements. Finally, we formulate a data-driven LQR problem as a semidefinite program (SDP) that computes an optimal gain, minimizing the steady-state covariance. Extensive simulations on benchmark systems -- including a rotary inverted pendulum and an active suspension system -- demonstrate the superior robustness and accuracy of our method compared to existing data-driven LQR approaches. The proposed framework offers a practical and theoretically grounded solution for controller design in noise-corrupted environments where system identification is infeasible.

Summary

We haven't generated a summary for this paper yet.