Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

STRGCN: Capturing Asynchronous Spatio-Temporal Dependencies for Irregular Multivariate Time Series Forecasting (2505.04167v1)

Published 7 May 2025 in cs.LG

Abstract: Irregular multivariate time series (IMTS) are prevalent in real-world applications across many fields, where varying sensor frequencies and asynchronous measurements pose significant modeling challenges. Existing solutions often rely on a pre-alignment strategy to normalize data, which can distort intrinsic patterns and escalate computational and memory demands. Addressing these limitations, we introduce STRGCN, a Spatio-Temporal Relational Graph Convolutional Network that avoids pre-alignment and directly captures the complex interdependencies in IMTS by representing them as a fully connected graph. Each observation is represented as a node, allowing the model to effectively handle misaligned timestamps by mapping all inter-node relationships, thus faithfully preserving the asynchronous nature of the data. Moreover, we enhance this model with a hierarchical ``Sandwich'' structure that strategically aggregates nodes to optimize graph embeddings, reducing computational overhead while maintaining detailed local and global context. Extensive experiments on four public datasets demonstrate that STRGCN achieves state-of-the-art accuracy, competitive memory usage and training speed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.