Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning based convex approximation for constrained parametric optimization (2505.04037v1)

Published 7 May 2025 in math.OC and cs.LG

Abstract: We propose an input convex neural network (ICNN)-based self-supervised learning framework to solve continuous constrained optimization problems. By integrating the augmented Lagrangian method (ALM) with the constraint correction mechanism, our framework ensures \emph{non-strict constraint feasibility}, \emph{better optimality gap}, and \emph{best convergence rate} with respect to the state-of-the-art learning-based methods. We provide a rigorous convergence analysis, showing that the algorithm converges to a Karush-Kuhn-Tucker (KKT) point of the original problem even when the internal solver is a neural network, and the approximation error is bounded. We test our approach on a range of benchmark tasks including quadratic programming (QP), nonconvex programming, and large-scale AC optimal power flow problems. The results demonstrate that compared to existing solvers (e.g., \texttt{OSQP}, \texttt{IPOPT}) and the latest learning-based methods (e.g., DC3, PDL), our approach achieves a superior balance among accuracy, feasibility, and computational efficiency.

Summary

We haven't generated a summary for this paper yet.