2000 character limit reached
On the continuity of solutions to the anisotropic $N$-Laplacian with $L^1$ lower order term (2505.03381v1)
Published 6 May 2025 in math.AP
Abstract: We establish the continuity of bounded solutions to the anisotropic elliptic equation $$-\sum\limits_{i=1}N\Big(|u_{x_i}|{p_i-2} u_{x_i}\Big){x_i}=f(x),\quad x\in \Omega,\quad f(x)\in L1(\Omega)$$ under the conditions $$\min\limits{1\leqslant i\leqslant N} p_i >1,\quad \sum\limits_{i=1}N \frac{1}{p_i}=1$$ and $$\lim\limits_{\rho\rightarrow 0}\,\sup\limits_{x\in \Omega}\int\limits{\rho}0\Big(\int\limits{B_r(x)}|f(y)|\,dy\Big){\frac{1}{N-1}}\frac{dr}{r}=0.$$ In the standard case $p_1=...=p_N=N$, these conditions recover the known results for the $N$-Laplacian.