Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universality of the convergence rate for spectral radius of complex IID random matrices (2505.03198v2)

Published 6 May 2025 in math.PR

Abstract: Let $X$ be an $n\times n$ matrix with independent and identically distributed entries $x_{ij} \stackrel{\text { d }}{=} n{-1 / 2} x$ for some complex random variable $x$ of mean zero and variance one. Let ${\sigma_i}{1\le i\le n}$ be the eigenvalues of $X$ and let $|\sigma_1|:=\max{1\le i\le n}|\sigma_i|$ be the spectral radius. Set $Y_n=\sqrt{4 n \gamma_n}\left[|\sigma_1|-1-\sqrt{\frac{\gamma_n}{4 n}}\right],$ where $\gamma_{n}=\log{n}-2\log{\log{n}}-\log{2\pi}.$ As established in \cite{Cipolloni23Universality}, with specific moment-related conditions imposed on $x,$ the Gumbel distribution $\Lambda$ is identified as the universal weak limit of $Y_n.$ Subsequently, we extend this line of research and rigorously prove that the convergence rate, previously obtained for complex Ginibre ensembles in \cite{MaMeng25}, also possesses the property of universality. Precisely, one gets $$\sup_{x\in \mathbb{R}}|\mathbb{P}(Y_n \leq x)-e{-e{-x}}|=\frac{2\log\log n}{e\log n}(1+o(1))$$ and $$W_1\left(\mathcal{L}(Y_n), \Lambda\right)=\frac{2\log\log n}{\log n}(1+o(1))$$ for sufficiently large $n$, where $\mathcal{L}(Y_n)$ is the distribution of $Y_n$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com