Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Note on a sum involving the divisor function (2505.01645v1)

Published 3 May 2025 in math.NT

Abstract: Let $d(n)$ be the divisor function and denote by $[t]$ the integral part of the real number $t$. In this paper, we prove that $$\sum_{n\leq x{1/c}}d\left(\left[\frac{x}{nc}\right]\right)=d_cx{1/c}+\mathcal{O}_{\varepsilon,c} \left(x{\max{(2c+2)/(2c2+5c+2),5/(5c+6)}+\varepsilon}\right),$$ where $d_c=\sum_{k\geq1}d(k)\left(\frac{1}{k{1/c}}-\frac{1}{(k+1){1/c}}\right)$ is a constant. This result constitutes an improvement upon that of Feng.

Summary

We haven't generated a summary for this paper yet.