Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Howard's Policy Iteration is Subexponential for Deterministic Markov Decision Problems with Rewards of Fixed Bit-size and Arbitrary Discount Factor (2505.00795v1)

Published 1 May 2025 in cs.AI

Abstract: Howard's Policy Iteration (HPI) is a classic algorithm for solving Markov Decision Problems (MDPs). HPI uses a "greedy" switching rule to update from any non-optimal policy to a dominating one, iterating until an optimal policy is found. Despite its introduction over 60 years ago, the best-known upper bounds on HPI's running time remain exponential in the number of states -- indeed even on the restricted class of MDPs with only deterministic transitions (DMDPs). Meanwhile, the tightest lower bound for HPI for MDPs with a constant number of actions per state is only linear. In this paper, we report a significant improvement: a subexponential upper bound for HPI on DMDPs, which is parameterised by the bit-size of the rewards, while independent of the discount factor. The same upper bound also applies to DMDPs with only two possible rewards (which may be of arbitrary size).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets