Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian approach to inverse problems in spaces of measures (2505.00151v1)

Published 30 Apr 2025 in math.ST, cs.NA, math.NA, and stat.TH

Abstract: In this work, we develop a Bayesian framework for solving inverse problems in which the unknown parameter belongs to a space of Radon measures taking values in a separable Hilbert space. The inherent ill-posedness of such problems is addressed by introducing suitable measure-valued priors that encode prior information and promote desired sparsity properties of the parameter. Under appropriate assumptions on the forward operator and noise model, we establish the well-posedness of the Bayesian formulation by proving the existence, uniqueness, and stability of the posterior with respect to perturbations in the observed data. In addition, we also discuss computational strategies for approximating the posterior distribution. Finally, we present some examples that demonstrate the effectiveness of the proposed approach.

Summary

We haven't generated a summary for this paper yet.