Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data (2504.20940v1)

Published 29 Apr 2025 in physics.chem-ph, cs.LG, and physics.comp-ph

Abstract: Coarse-grained (CG) models offer an effective route to reducing the complexity of molecular simulations, yet conventional approaches depend heavily on long all-atom molecular dynamics (MD) trajectories to adequately sample configurational space. This data-driven dependence limits their accuracy and generalizability, as unvisited configurations remain excluded from the resulting CG model. We introduce a data-free generative framework for coarse-graining that directly targets the all-atom Boltzmann distribution. Our model defines a structured latent space comprising slow collective variables, which are statistically associated with multimodal marginal densities capturing metastable states, and fast variables, which represent the remaining degrees of freedom with simple, unimodal conditional distributions. A potentially learnable, bijective map from the full latent space to the all-atom configuration space enables automatic and accurate reconstruction of molecular structures. The model is trained using an energy-based objective that minimizes the reverse Kullback-Leibler divergence, relying solely on the interatomic potential rather than sampled trajectories. A tempering scheme is used to stabilize training and promote exploration of diverse configurations. Once trained, the model can generate unbiased, one-shot equilibrium all-atom samples. We validate the method on two synthetic systems-a double-well potential and a Gaussian mixture-as well as on the benchmark alanine dipeptide. The model captures all relevant modes of the Boltzmann distribution, accurately reconstructs atomic configurations, and learns physically meaningful coarse-grained representations, all without any simulation data.

Summary

We haven't generated a summary for this paper yet.