Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrability of homogeneous exact magnetic flows on spheres (2504.20515v1)

Published 29 Apr 2025 in math.DG and nlin.SI

Abstract: We consider motion of a material point placed in a constant homogeneous magnetic field in $\mathbb Rn$ and also motion restricted to the sphere $S{n-1}$. While there is an obvious integrability of the magnetic system in $\mathbb Rn$, the integrability of the system restricted to the sphere $S{n-1}$ is highly non-trivial. We prove complete integrability of the obtained restricted magnetic systems for $n\le 6$. The first integrals of motion of the magnetic flows on the spheres $S{n-1}$, for $n=5$ and $n=6$, are polynomials of the degree $1$, $2$, and $3$ in momenta. We prove noncommutative integrability of the obtained magnetic flows for any $n\ge 7$ when the systems allow a reduction to the cases with $n\le 6$. We conjecture that the restricted magnetic systems on $S{n-1}$ are integrable for all $n$.

Summary

We haven't generated a summary for this paper yet.