Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TAMO:Fine-Grained Root Cause Analysis via Tool-Assisted LLM Agent with Multi-Modality Observation Data in Cloud-Native Systems (2504.20462v3)

Published 29 Apr 2025 in cs.AI

Abstract: With the development of distributed systems, microservices and cloud native technologies have become central to modern enterprise software development. Despite bringing significant advantages, these technologies also increase system complexity and operational challenges. Traditional root cause analysis (RCA) struggles to achieve automated fault response, heavily relying on manual intervention. In recent years, LLMs have made breakthroughs in contextual inference and domain knowledge integration, providing new solutions for Artificial Intelligence for Operations (AIOps). However, Existing LLM-based approaches face three key challenges: text input constraints, dynamic service dependency hallucinations, and context window limitations. To address these issues, we propose a tool-assisted LLM agent with multi-modality observation data, namely TAMO, for fine-grained RCA. It unifies multi-modal observational data into time-aligned representations to extract consistent features and employs specialized root cause localization and fault classification tools for perceiving the contextual environment. This approach overcomes the limitations of LLM in handling real-time changing service dependencies and raw observational data and guides LLM to generate repair strategies aligned with system contexts by structuring key information into a prompt. Experimental results show that TAMO performs well in root cause analysis when dealing with public datasets characterized by heterogeneity and common fault types, demonstrating its effectiveness.

Summary

We haven't generated a summary for this paper yet.