Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing the Limit of Atmospheric Predictability with a Machine Learning Weather Model (2504.20238v1)

Published 28 Apr 2025 in physics.ao-ph and cs.LG

Abstract: Atmospheric predictability research has long held that the limit of skillful deterministic weather forecasts is about 14 days. We challenge this limit using GraphCast, a machine-learning weather model, by optimizing forecast initial conditions using gradient-based techniques for twice-daily forecasts spanning 2020. This approach yields an average error reduction of 86% at 10 days, with skill lasting beyond 30 days. Mean optimal initial-condition perturbations reveal large-scale, spatially coherent corrections to ERA5, primarily reflecting an intensification of the Hadley circulation. Forecasts using GraphCast-optimal initial conditions in the Pangu-Weather model achieve a 21% error reduction, peaking at 4 days, indicating that analysis corrections reflect a combination of both model bias and a reduction in analysis error. These results demonstrate that, given accurate initial conditions, skillful deterministic forecasts are consistently achievable far beyond two weeks, challenging long-standing assumptions about the limits of atmospheric predictability.

Summary

We haven't generated a summary for this paper yet.