Infinitely many solutions for a class of elliptic boundary value problems with $(p,q)$-Kirchhoff type (2504.19576v1)
Abstract: In this paper, we investigate the existence of infinitely many solutions for the following elliptic boundary value problem with $(p,q)$-Kirchhoff type \begin{eqnarray*} \begin{cases} -\Big[M_1\left(\int_\Omega|\nabla u_1|p dx\right)\Big]{p-1}\Delta_p u_1+\Big[M_3\left(\int_\Omega a_1(x)|u_1|p dx\right)\Big]{p-1}a_1(x)|u_1|{p-2}u_1=G_{u_1}(x,u_1,u_2)\ \ \mbox{in }\Omega, -\Big[M_2\left(\int_\Omega|\nabla u_2|q dx\right)\Big]{q-1}\Delta_q u_2+\Big[M_4\left(\int_\Omega a_2(x)|u_2|q dx\right)\Big]{q-1}a_2(x)|u_2|{q-2}u_2=G_{u_2}(x,u_1,u_2)\ \ \mbox{in }\Omega, u_1=u_2=0\ \ \quad \quad \quad \quad \quad \quad \quad \ \mbox{ on }\partial\Omega. \end{cases} \end{eqnarray*} By using a critical point theorem due to Ding in [Y. H. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal, 25(11)(1995)1095-1113], we obtain that system has infinitely many solutions under the sub-$(p,q)$ conditions.