Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NSFlow: An End-to-End FPGA Framework with Scalable Dataflow Architecture for Neuro-Symbolic AI (2504.19323v2)

Published 27 Apr 2025 in cs.AR, cs.AI, cs.LG, and cs.PF

Abstract: Neuro-Symbolic AI (NSAI) is an emerging paradigm that integrates neural networks with symbolic reasoning to enhance the transparency, reasoning capabilities, and data efficiency of AI systems. Recent NSAI systems have gained traction due to their exceptional performance in reasoning tasks and human-AI collaborative scenarios. Despite these algorithmic advancements, executing NSAI tasks on existing hardware (e.g., CPUs, GPUs, TPUs) remains challenging, due to their heterogeneous computing kernels, high memory intensity, and unique memory access patterns. Moreover, current NSAI algorithms exhibit significant variation in operation types and scales, making them incompatible with existing ML accelerators. These challenges highlight the need for a versatile and flexible acceleration framework tailored to NSAI workloads. In this paper, we propose NSFlow, an FPGA-based acceleration framework designed to achieve high efficiency, scalability, and versatility across NSAI systems. NSFlow features a design architecture generator that identifies workload data dependencies and creates optimized dataflow architectures, as well as a reconfigurable array with flexible compute units, re-organizable memory, and mixed-precision capabilities. Evaluating across NSAI workloads, NSFlow achieves 31x speedup over Jetson TX2, more than 2x over GPU, 8x speedup over TPU-like systolic array, and more than 3x over Xilinx DPU. NSFlow also demonstrates enhanced scalability, with only 4x runtime increase when symbolic workloads scale by 150x. To the best of our knowledge, NSFlow is the first framework to enable real-time generalizable NSAI algorithms acceleration, demonstrating a promising solution for next-generation cognitive systems.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com