Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Climate Model Bias Correction Using Deep Learning (2504.19145v1)

Published 27 Apr 2025 in physics.ao-ph, cs.LG, and stat.AP

Abstract: Climate change affects ocean temperature, salinity and sea level, impacting monsoons and ocean productivity. Future projections by Global Climate Models based on shared socioeconomic pathways from the Coupled Model Intercomparison Project (CMIP) are widely used to understand the effects of climate change. However, CMIP models have significant bias compared to reanalysis in the Bay of Bengal for the time period when both projections and reanalysis are available. For example, there is a 1.5C root mean square error (RMSE) in the sea surface temperature (SST) projections of the climate model CNRM-CM6 compared to the Ocean Reanalysis System (ORAS5). We develop a suite of data-driven deep learning models for bias correction of climate model projections and apply it to correct SST projections of the Bay of Bengal. We propose the use of three different deep neural network architectures: convolutional encoder-decoder UNet, Bidirectional LSTM and ConvLSTM. We also use a baseline linear regression model and the Equi-Distant Cumulative Density Function (EDCDF) bias correction method for comparison and evaluating the impact of the new deep learning models. All bias correction models are trained using pairs of monthly CMIP6 projections and the corresponding month's ORAS5 as input and output. Historical data (1950-2014) and future projection data (2015-2020) of CNRM-CM6 are used for training and validation, including hyperparameter tuning. Testing is performed on future projection data from 2021 to 2024. Detailed analysis of the three deep neural models has been completed. We found that the UNet architecture trained using a climatology-removed CNRM-CM6 projection as input and climatology-removed ORAS5 as output gives the best bias-corrected projections. Our novel deep learning-based method for correcting CNRM-CM6 data has a 15% reduction in RMSE compared EDCDF.

Summary

We haven't generated a summary for this paper yet.