Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Preliminary Investigation on the Usage of Quantum Approximate Optimization Algorithms for Test Case Selection (2504.18955v2)

Published 26 Apr 2025 in quant-ph and cs.SE

Abstract: Regression testing is key in verifying that software works correctly after changes. However, running the entire regression test suite can be impractical and expensive, especially for large-scale systems. Test suite optimization methods are highly effective but often become infeasible due to their high computational demands. In previous work, Trovato et al. proposed SelectQA, an approach based on quantum annealing that outperforms the traditional state-of-the-art methods, i.e., Additional Greedy and DIV-GA, in efficiency. This work envisions the usage of Quantum Approximate Optimization Algorithms (QAOAs) for test case selection by proposing QAOA-TCS. QAOAs merge the potential of gate-based quantum machines with the optimization capabilities of the adiabatic evolution. To prove the effectiveness of QAOAs for test case selection, we preliminarily investigate QAOA-TCS leveraging an ideal environment simulation before evaluating it on real quantum machines. Our results show that QAOAs perform better than the baseline algorithms in effectiveness while being comparable to SelectQA in terms of efficiency. These results encourage us to continue our experimentation with noisy environment simulations and real quantum machines.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com