Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Gradient-Optimized TSK Fuzzy Framework for Explainable Phishing Detection (2504.18636v1)

Published 25 Apr 2025 in cs.CR, cs.AI, and cs.LO

Abstract: Phishing attacks represent an increasingly sophisticated and pervasive threat to individuals and organizations, causing significant financial losses, identity theft, and severe damage to institutional reputations. Existing phishing detection methods often struggle to simultaneously achieve high accuracy and explainability, either failing to detect novel attacks or operating as opaque black-box models. To address this critical gap, we propose a novel phishing URL detection system based on a first-order Takagi-Sugeno-Kang (TSK) fuzzy inference model optimized through gradient-based techniques. Our approach intelligently combines the interpretability and human-like reasoning capabilities of fuzzy logic with the precision and adaptability provided by gradient optimization methods, specifically leveraging the Adam optimizer for efficient parameter tuning. Experiments conducted using a comprehensive dataset of over 235,000 URLs demonstrate rapid convergence, exceptional predictive performance (accuracy averaging 99.95% across 5 cross-validation folds, with a perfect AUC i.e. 1.00). Furthermore, optimized fuzzy rules and membership functions improve interoperability, clearly indicating how the model makes decisions - an essential feature for cybersecurity applications. This high-performance, transparent, and interpretable phishing detection framework significantly advances current cybersecurity defenses, providing practitioners with accurate and explainable decision-making tools.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com