Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive feasibility for stochastic MPC and the rationale behind fixing flat tires (2504.17718v1)

Published 24 Apr 2025 in math.OC, cs.SY, and eess.SY

Abstract: In this paper, we address the problem of designing stochastic model predictive control (SMPC) schemes for linear systems affected by unbounded disturbances. The contribution of the paper is rooted in a measured-state initialization strategy. First, due to the nonzero probability of violating chance-constraints in the case of unbounded noise, we introduce ellipsoidal-based probabilistic reachable sets and we include constraint relaxations to recover recursive feasibility conditioned to the measured state. Second, we prove that the solution of this novel SMPC scheme guarantees closed-loop chance constraints satisfaction under minimum relaxation. Last, we demonstrate that, in expectation, the need of relaxing the constraints vanishes over time, which leads the closed-loop trajectories steered towards the unconstrained LQR invariant region. This novel SMPC scheme is proven to satisfy the recursive feasibility conditioned to the state realization, and its superiority with respect to open-loop initialization schemes is shown through numerical examples.

Summary

We haven't generated a summary for this paper yet.