Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Parameter Estimation for Partially Observed McKean-Vlasov Diffusions Using Multilevel Markov chain Monte Carlo (2504.15588v1)

Published 22 Apr 2025 in stat.CO, cs.NA, and math.NA

Abstract: In this article we consider Bayesian estimation of static parameters for a class of partially observed McKean-Vlasov diffusion processes with discrete-time observations over a fixed time interval. This problem features several obstacles to its solution, which include that the posterior density is numerically intractable in continuous-time, even if the transition probabilities are available and even when one uses a time-discretization, the posterior still cannot be used by adopting well-known computational methods such as Markov chain Monte Carlo (MCMC). In this paper we provide a solution to this problem by using new MCMC algorithms which can solve the afore-mentioned issues. This MCMC algorithm is extended to use multilevel Monte Carlo (MLMC) methods. We prove convergence bounds on our parameter estimators and show that the MLMC-based MCMC algorithm reduces the computational cost to achieve a mean square error versus ordinary MCMC by an order of magnitude. We numerically illustrate our results on two models.

Summary

We haven't generated a summary for this paper yet.