Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative Resolvent and Eigenfunction Stability for the Faber-Krahn Inequality (2504.13053v1)

Published 17 Apr 2025 in math.AP

Abstract: For a bounded open set $\Omega \subset \mathbb{R}n$ with the same volume as the unit ball, the classical Faber-Krahn inequality says that the first Dirichlet eigenvalue $\lambda_1(\Omega)$ of the Laplacian is at least that of the unit ball $B$. We prove that the deficit $\lambda_1(\Omega)- \lambda_1(B)$ in the Faber-Krahn inequality controls the square of the distance between the resolvent operator $(-\Delta_\Omega){-1}$ for the Dirichlet Laplacian on $\Omega$ and the resolvent operator on the nearest unit ball $B(x_\Omega)$. The distance is measured by the operator norm from $C{0,\alpha}$ to $L2$. As a main application, we show that the Faber-Krahn deficit $\lambda_1(\Omega)- \lambda_1(B)$ controls the squared $L2$ norm between $k$th eigenfunctions on $\Omega$ and $B(x_\Omega)$ for every $k \in \mathbb{N}.$ In both of these main theorems, the quadratic power is optimal.

Summary

We haven't generated a summary for this paper yet.