Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Bayesian Optimization via Wasserstein Barycenters (2504.10770v1)

Published 15 Apr 2025 in cs.LG and math.OC

Abstract: Motivated by the growing need for black-box optimization and data privacy, we introduce a collaborative Bayesian optimization (BO) framework that addresses both of these challenges. In this framework agents work collaboratively to optimize a function they only have oracle access to. In order to mitigate against communication and privacy constraints, agents are not allowed to share their data but can share their Gaussian process (GP) surrogate models. To enable collaboration under these constraints, we construct a central model to approximate the objective function by leveraging the concept of Wasserstein barycenters of GPs. This central model integrates the shared models without accessing the underlying data. A key aspect of our approach is a collaborative acquisition function that balances exploration and exploitation, allowing for the optimization of decision variables collaboratively in each iteration. We prove that our proposed algorithm is asymptotically consistent and that its implementation via Monte Carlo methods is numerically accurate. Through numerical experiments, we demonstrate that our approach outperforms other baseline collaborative frameworks and is competitive with centralized approaches that do not consider data privacy.

Summary

We haven't generated a summary for this paper yet.