Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Informed Neural Networks for Enhanced Interface Preservation in Lattice Boltzmann Multiphase Simulations (2504.10539v2)

Published 13 Apr 2025 in physics.flu-dyn and cs.AI

Abstract: This paper presents an improved approach for preserving sharp interfaces in multiphase Lattice Boltzmann Method (LBM) simulations using Physics-Informed Neural Networks (PINNs). Interface diffusion is a common challenge in multiphase LBM, leading to reduced accuracy in simulating phenomena where interfacial dynamics are critical. We propose a coupled PINN-LBM framework that maintains interface sharpness while preserving the physical accuracy of the simulation. Our approach is validated through droplet simulations, with quantitative metrics measuring interface width, maximum gradient, phase separation, effective interface width, and interface energy. The enhanced visualization techniques employed in this work clearly demonstrate the superior performance of PINN-LBM over standard LBM for multiphase simulations, particularly in maintaining well-defined interfaces throughout the simulation. We provide a comprehensive analysis of the results, showcasing how the neural network integration effectively counteracts numerical diffusion, while maintaining physical consistency with the underlying fluid dynamics.

Summary

We haven't generated a summary for this paper yet.