Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameters estimation of a Threshold Chan-Karolyi-Longstaff-Sanders process from continuous and discrete observations (2504.10022v1)

Published 14 Apr 2025 in math.ST, math.PR, and stat.TH

Abstract: We consider a continuous time process that is self-exciting and ergodic, called threshold Chan-Karolyi-Longstaff-Sanders (CKLS) process. This process is a generalization of various models in econometrics, such as Vasicek model, Cox-Ingersoll-Ross, and Black-Scholes, allowing for the presence of several thresholds which determine changes in the dynamics. We study the asymptotic behavior of maximum-likelihood and quasi-maximum-likelihood estimators of the drift parameters in the case of continuous time and discrete time observations. We show that for high frequency observations and infinite horizon the estimators satisfy the same asymptotic normality property as in the case of continuous time observations. We also discuss diffusion coefficient estimation. Finally, we apply our estimators to simulated and real data to motivate considering (multiple) thresholds.

Summary

We haven't generated a summary for this paper yet.