Normalized solutions to mixed dispersion nonlinear Schrödinger system with coupled nonlinearity (2504.07506v1)
Abstract: In this paper, we consider the existence of normalized solutions for the following biharmonic nonlinear Schr\"{o}dinger system [ \begin{aligned} \begin{cases} &\Delta2u+\alpha_{1}\Delta u+\lambda u=\beta r_{1}|u|{r_{1}-2}|v|{r_{2}} u &&\text{ in } \mathbb{R}{N}, & \Delta2v+\alpha_{2}\Delta v+\lambda v=\beta r_{2}|u|{r_{1}}|v|{r_{2}-2} v && \text{ in } \mathbb{R}{N},\ & \int_{\mathbb{R}{N}} (u{2}+v{2}){\rm d} x=\rho{2},&& \end{cases} \end{aligned} ] where $\Delta2u=\Delta(\Delta u)$ is the biharmonic operator, $\alpha_{1}$, $\alpha_{2}$, $\beta>0$, $r_{1}$, $r_{2}>1$, $N\geq 1$. $\rho2$ stands for the prescribed mass, and $\lambda\in\mathbb{R}$ arises as a Lagrange multiplier. Such single constraint permits mass transformation in two materials. When $r_{1}+r_{2}\in\left(2,2+\frac{8}{N}\right]$, we obtain a dichotomy result for the existence of nontrivial ground states. Especially when $\alpha_1=\alpha_2$, the ground state exists for all $\rho>0$ if and only if $r_1+r_2<\min\left{\max\left{4, 2+\frac{8}{N+1}\right}, 2+\frac{8}{N}\right}$. When $r_{1}+r_{2}\in\left(2+\frac{8}{N}, \frac{2N}{(N-4){+}}\right)$ and $N\geq 2$, we obtain the existence of radial nontrivial mountain pass solution for small $\rho>0$.