Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Engineering solutions for non-stationary gas pipeline reconstruction and emergency management (2504.06904v1)

Published 9 Apr 2025 in math.OC

Abstract: The reconstruction, management, and optimization of gas pipelines is of significant importance for solving modern engineering problems. This paper presents innovative methodologies aimed at the effective reconstruction of gas pipelines under unstable conditions. The research encompasses the application of machine learning and optimization algorithms, targeting the enhancement of system reliability and the optimization of interventions during emergencies. The findings of the study present engineering solutions aimed at addressing the challenges in real-world applications by comparing the performance of various algorithms. Consequently, this work contributes to the advancement of cutting-edge approaches in the field of engineering and opens new perspectives for future research. A highly reliable and efficient technological Figure has been proposed for managing emergency processes in gas transportation based on the principles of the reconstruction phase. For complex gas pipeline systems, new approaches have been investigated for the modernization of existing control process monitoring systems. These approaches are based on modern achievements in control theory and information technology, aiming to select emergency and technological modes. One of the pressing issues is to develop a method to minimize the transmission time of measured and controlled data on non-stationary flow parameters of gas networks to dispatcher control centers. Therefore, the reporting Figures obtained for creating a reliable information base for dispatcher centers using modern methods to efficiently manage the gas dynamic processes of non-stationary modes are of particular importance.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com