Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Machine Unlearning Through the Lens of Mode Connectivity (2504.06407v1)

Published 8 Apr 2025 in cs.LG, cs.AI, cs.CL, and cs.CV

Abstract: Machine Unlearning aims to remove undesired information from trained models without requiring full retraining from scratch. Despite recent advancements, their underlying loss landscapes and optimization dynamics received less attention. In this paper, we investigate and analyze machine unlearning through the lens of mode connectivity - the phenomenon where independently trained models can be connected by smooth low-loss paths in the parameter space. We define and study mode connectivity in unlearning across a range of overlooked conditions, including connections between different unlearning methods, models trained with and without curriculum learning, and models optimized with first-order and secondorder techniques. Our findings show distinct patterns of fluctuation of different evaluation metrics along the curve, as well as the mechanistic (dis)similarity between unlearning methods. To the best of our knowledge, this is the first study on mode connectivity in the context of machine unlearning.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets