Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Accelerating LLM Inference Throughput via Asynchronous KV Cache Prefetching (2504.06319v1)

Published 8 Apr 2025 in cs.LG and cs.AI

Abstract: LLMs exhibit pronounced memory-bound characteristics during inference due to High Bandwidth Memory (HBM) bandwidth constraints. In this paper, we propose an L2 Cache-oriented asynchronous KV Cache prefetching method to break through the memory bandwidth bottleneck in LLM inference through computation-load overlap. By strategically scheduling idle memory bandwidth during active computation windows, our method proactively prefetches required KV Cache into GPU L2 cache, enabling high-speed L2 cache hits for subsequent accesses and effectively hiding HBM access latency within computational cycles. Extensive experiments on NVIDIA H20 GPUs demonstrate that the proposed method achieves 2.15x improvement in attention kernel efficiency and up to 1.97x end-to-end throughput enhancement, surpassing state-of-the-art baseline FlashAttention-3. Notably, our solution maintains orthogonality to existing optimization techniques and can be integrated with current inference frameworks, providing a scalable latency-hiding solution for next-generation LLM inference engines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.