Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Interaction via Monte Carlo Linear-Quadratic Games (2504.06124v1)

Published 8 Apr 2025 in cs.RO

Abstract: Safety is critical during human-robot interaction. But -- because people are inherently unpredictable -- it is often difficult for robots to plan safe behaviors. Instead of relying on our ability to anticipate humans, here we identify robot policies that are robust to unexpected human decisions. We achieve this by formulating human-robot interaction as a zero-sum game, where (in the worst case) the human's actions directly conflict with the robot's objective. Solving for the Nash Equilibrium of this game provides robot policies that maximize safety and performance across a wide range of human actions. Existing approaches attempt to find these optimal policies by leveraging Hamilton-Jacobi analysis (which is intractable) or linear-quadratic approximations (which are inexact). By contrast, in this work we propose a computationally efficient and theoretically justified method that converges towards the Nash Equilibrium policy. Our approach (which we call MCLQ) leverages linear-quadratic games to obtain an initial guess at safe robot behavior, and then iteratively refines that guess with a Monte Carlo search. Not only does MCLQ provide real-time safety adjustments, but it also enables the designer to tune how conservative the robot is -- preventing the system from focusing on unrealistic human behaviors. Our simulations and user study suggest that this approach advances safety in terms of both computation time and expected performance. See videos of our experiments here: https://youtu.be/KJuHeiWVuWY.

Summary

We haven't generated a summary for this paper yet.