Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approach to optimal quantum transport via states over time (2504.04856v1)

Published 7 Apr 2025 in quant-ph, math-ph, and math.MP

Abstract: We approach the problem of constructing a quantum analogue of the immensely fruitful classical transport cost theory of Monge from a new angle. Going back to the original motivations, by which the transport is a bilinear function of a mass distribution (without loss of generality a probability density) and a transport plan (a stochastic kernel), we explore the quantum version where the mass distribution is generalised to a density matrix, and the transport plan to a completely positive and trace preserving map. These two data are naturally integrated into their Jordan product, which is called state over time (``stote''), and the transport cost is postulated to be a linear function of it. We explore the properties of this transport cost, as well as the optimal transport cost between two given states (simply the minimum cost over all suitable transport plans). After that, we analyse in considerable detail the case of unitary invariant cost, for which we can calculate many costs analytically. These findings suggest that our quantum transport cost is qualitatively different from Monge's classical transport.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets