Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Trust in AI Marketplaces: Evaluating On-Chain Verification of Personalized AI models using zk-SNARKs (2504.04794v1)

Published 7 Apr 2025 in cs.CR and cs.DC

Abstract: The rapid advancement of AI has brought about sophisticated models capable of various tasks ranging from image recognition to natural language processing. As these models continue to grow in complexity, ensuring their trustworthiness and transparency becomes critical, particularly in decentralized environments where traditional trust mechanisms are absent. This paper addresses the challenge of verifying personalized AI models in such environments, focusing on their integrity and privacy. We propose a novel framework that integrates zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) with Chainlink decentralized oracles to verify AI model performance claims on blockchain platforms. Our key contribution lies in integrating zk-SNARKs with Chainlink oracles to securely fetch and verify external data to enable trustless verification of AI models on a blockchain. Our approach addresses the limitations of using unverified external data for AI verification on the blockchain while preserving sensitive information of AI models and enhancing transparency. We demonstrate our methodology with a linear regression model predicting Bitcoin prices using on-chain data verified on the Sepolia testnet. Our results indicate the framework's efficacy, with key metrics including proof generation taking an average of 233.63 seconds and verification time of 61.50 seconds. This research paves the way for transparent and trustless verification processes in blockchain-enabled AI ecosystems, addressing key challenges such as model integrity and model privacy protection. The proposed framework, while exemplified with linear regression, is designed for broader applicability across more complex AI models, setting the stage for future advancements in transparent AI verification.

Summary

We haven't generated a summary for this paper yet.