Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LATTE: Lightweight Attention-based Traffic Accident Anticipation Engine (2504.04103v2)

Published 5 Apr 2025 in cs.CE

Abstract: Accurately predicting traffic accidents in real-time is a critical challenge in autonomous driving, particularly in resource-constrained environments. Existing solutions often suffer from high computational overhead or fail to adequately address the uncertainty of evolving traffic scenarios. This paper introduces LATTE, a Lightweight Attention-based Traffic Accident Anticipation Engine, which integrates computational efficiency with state-of-the-art performance. LATTE employs Efficient Multiscale Spatial Aggregation (EMSA) to capture spatial features across scales, Memory Attention Aggregation (MAA) to enhance temporal modeling, and Auxiliary Self-Attention Aggregation (AAA) to extract latent dependencies over extended sequences. Additionally, LATTE incorporates the Flamingo Alert-Assisted System (FAA), leveraging a vision-LLM to provide real-time, cognitively accessible verbal hazard alerts, improving passenger situational awareness. Evaluations on benchmark datasets (DAD, CCD, A3D) demonstrate LATTE's superior predictive capabilities and computational efficiency. LATTE achieves state-of-the-art 89.74% Average Precision (AP) on DAD benchmark, with 5.4% higher mean Time-To-Accident (mTTA) than the second-best model, and maintains competitive mTTA at a Recall of 80% (TTA@R80) (4.04s) while demonstrating robust accident anticipation across diverse driving conditions. Its lightweight design delivers a 93.14% reduction in floating-point operations (FLOPs) and a 31.58% decrease in parameter count (Params), enabling real-time operation on resource-limited hardware without compromising performance. Ablation studies confirm the effectiveness of LATTE's architectural components, while visualizations and failure case analyses highlight its practical applicability and areas for enhancement.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com