Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HeterMoE: Efficient Training of Mixture-of-Experts Models on Heterogeneous GPUs (2504.03871v1)

Published 4 Apr 2025 in cs.DC and cs.LG

Abstract: The Mixture-of-Experts (MoE) architecture has become increasingly popular as a method to scale up LLMs. To save costs, heterogeneity-aware training solutions have been proposed to utilize GPU clusters made up of both newer and older-generation GPUs. However, existing solutions are agnostic to the performance characteristics of different MoE model components (i.e., attention and expert) and do not fully utilize each GPU's compute capability. In this paper, we introduce HeterMoE, a system to efficiently train MoE models on heterogeneous GPUs. Our key insight is that newer GPUs significantly outperform older generations on attention due to architectural advancements, while older GPUs are still relatively efficient for experts. HeterMoE disaggregates attention and expert computation, where older GPUs are only assigned with expert modules. Through the proposed zebra parallelism, HeterMoE overlaps the computation on different GPUs, in addition to employing an asymmetric expert assignment strategy for fine-grained load balancing to minimize GPU idle time. Our evaluation shows that HeterMoE achieves up to 2.3x speed-up compared to existing MoE training systems, and 1.4x compared to an optimally balanced heterogeneity-aware solution. HeterMoE efficiently utilizes older GPUs by maintaining 95% training throughput on average, even with half of the GPUs in a homogeneous A40 cluster replaced with V100.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com