Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Chart-to-Code Generation in Multimodal Large Language Models via Iterative Dual Preference Learning (2504.02906v1)

Published 3 Apr 2025 in cs.CL and cs.AI

Abstract: Chart-to-code generation, the process of converting chart images into executable plotting scripts, provides a lossless representation of chart information, requiring models to accurately capture and summarize all visual and structural elements. However, this remains a significant challenge for multimodal LLMs (MLLMs), which are not inherently well-aligned with code generation tasks. To bridge this gap, we introduce Chart2Code, a novel iterative dual preference learning framework designed to enhance MLLMs' chart-to-code generation capabilities through structured code variant generation and fine-grained dual reward signals. We validate Chart2Code across three MLLMs and find that iterative preference learning consistently improves out-of-distribution chart-to-code generation quality. Throughout this process, our dual scoring method, which evaluates both the textual code structure and its visual representation, leads to greater performance improvements, even with a reduced preference dataset size. Further analysis explores the key components of our framework and highlights the interplay between chart-to-code generation and broader chart reasoning, paving the way for future advancements in chart comprehension.

Summary

We haven't generated a summary for this paper yet.