Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning quantum Gibbs states locally and efficiently (2504.02706v1)

Published 3 Apr 2025 in quant-ph and cond-mat.stat-mech

Abstract: Learning the Hamiltonian underlying a quantum many-body system in thermal equilibrium is a fundamental task in quantum learning theory and experimental sciences. To learn the Gibbs state of local Hamiltonians at any inverse temperature $\beta$, the state-of-the-art provable algorithms fall short of the optimal sample and computational complexity, in sharp contrast with the locality and simplicity in the classical cases. In this work, we present a learning algorithm that learns each local term of a $n$-qubit $D$-dimensional Hamiltonian to an additive error $\epsilon$ with sample complexity $\tilde{O}\left(\frac{e{\mathrm{poly}(\beta)}}{\beta2\epsilon2}\right)\log(n)$. The protocol uses parallelizable local quantum measurements that act within bounded regions of the lattice and near-linear-time classical post-processing. Thus, our complexity is near optimal with respect to $n,\epsilon$ and is polynomially tight with respect to $\beta$. We also give a learning algorithm for Hamiltonians with bounded interaction degree with sample and time complexities of similar scaling on $n$ but worse on $\beta, \epsilon$. At the heart of our algorithm is the interplay between locality, the Kubo-Martin-Schwinger condition, and the operator Fourier transform at arbitrary temperatures.

Summary

We haven't generated a summary for this paper yet.